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EXPERIMENTAL INVESTIGATION OF FLOW IN SHALLOW AND 

DEEP CAVITIES 

V. Ya. Bogatyrev and V. A. Mukhin UDC 532.556.2;532.574 

In the article we present the results of an experimental investigation of the flow of an 
incompressible liquid in shallow and deep cavities of rectangular cross section using a laser 
Doppler velocity meter (LDVM). The tests were made in the laminar mode of flow in the channel 
ahead of the cavity. The distribution of the longitudinal and transverse velocity components 
in the central cross section of the cavity is obtained. 

There are extremely few experimental data on the investigation of flow structure in 
cavities. The investigations have been confined mainly to visual observations [i]. Reports 
in which the static pressure and the shear stress at the cavity walls were measured are well 
known. The profiles of velocity and shear stress at the bottom of a shallow cavity (when the 
ratio of the length of the cavity to its depth is L/H > 1.75) were measured in [2]. It is 
impossible to build up a detailed concept of the character of the flow in cavities of different 
configurations on the basis of the available reports. 

A detailed description of the experimental setup and the measurement procedure is given 
in [3]. Here we only provide certain information about the test section. The test cavities 
had the following dimensions: shallow -- L = 40 mm, H = 20 mm; deep -- L = 20 mm, H = 40 mm. 
The width of a cavity equaled the width of the plane section (i00 mm). The cavities were 
located at a distance of 1500 mm from the plane section. During the measurements the focal 
region lay in a plane located at equal distances from the side walls of the cavity. The size 
of the focal region was i00 x i00 x 800 ~m. The thickness of the optical glasses was i0 mm. 
At a distance of 60 mm from the focal region the diameter of the laser beam was 0.5-0.6 mm. 
The minimum distance from the walls at which the alternate measurements of the longitudinal 
and transverse velocity components were made is ~i mm. Since the optical scheme of the LDVM 
did not permit a determination of the direction of the velocity, flow in the cavities was 
investigated in detail in the case when the laminar mode of liquid motion was established in 
the channel and cavity. In the turbulent mode of flow we investigated only the mixing zone 
[the region adjacent to the upper cut of the cavity can be considered as the zone of mixing 
of the jet formed after separation of the stream at the point x = 0, y = 0 from the stream 
in the cavity (Fig. ib)] and the boundary jet propagating along the back wall of the cavity, 
where the direction of motion is known. 

In the case of laminar flow of liquid in the channel at Re = 1.5"103 , flow with one 
vortex in the upper part and a stagnant zone in the lower half was observed in the cavity 
with L/H = 0.5. After a certain time flow with two vortices rotating in opposite directions 
was established. The flow patterns replaced one another. With an increase in the Reynolds 
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number the flow with two vortices became ever more stable, and steady two-vortex motion of the 
liquid could be obtained at Re = 4"10 s. The Reynolds number was calculated from the formula 
Re = uo2h/~, where uo is the liquid velocity at the channel axis in the cross section located 
at a distance of i0 mm upstream from the cavity; h is the channel height [Fig. ib; i) back 
wall; 2) bottom; 3) front wall; 4) mixing region]. The distributions of the longitudinal and 
transverse velocity components, normalized to the velocity at the channel axis in the cross 
section x/H =--0.25, are presented in Figs. la and 2a while the velocity field in the entire 
test region, canstructed from the data of Figs. la and 2a, is presented in Fig. 2b. It is 
seen that two vortices rotating in opposite directions exist in the middle cross section of 
the cavity~ Along the upper part of the back wall a boundary jet propagates downward, which 
then changes direction and at the front wall separates into two parts: One part moves upward 
along the front wall and the other moves down along the front wall. In Figs. la and 2a and b 
it is seen that the flow in a deep cavity has a clearly three-dimensional character, since in 
the horizontal cross sections the liquid flow rates in the descending and ascending streams 
are unequal. Thus, for the horizontal cross section y/H = -0.25 passing through the center of 
the upper vortex the ratio of the liquid flow rate in the descending stream to the flow rate 
in the ascending stream is B = G~/G2 = 1.6. In the horizontal cross section y/H = --0.85 
passing through the center of the lower vortex B = 1.5. The vortex in the upper part of the 
cavity has an elliptical shape with a ratio of axis lengths of 2:1. The major axis of the 
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ellipse is located at an angle of ~30 ~ to the vertical axis of the cavity. Since the velocity 
vectors tangent to the streamlines have the same magnitudes, while the streamlines are not 
circles, it can be concluded that the vorticity in a cavity of this geometry is not constant. 

The lower vortex has an elliptical shape with a ratio of axis lengths of 4:3. The 
vorticity in it is also variable. We should mention the complexities which arise in an experi- 
mental study of the velocity distribution in vortex flows and especially in the central parts 
of vortices. As the center of a vortex is approached, the magnitude of the velocity decreases, 
the relative oscillations of velocity increase, and the measurement errors grow correspondingly. 
Therefore, the flow pattern in the central parts of the vortices is still not clear. In [5] 
it was shown that in "plane" vortex flow in a cavity of square cross section a three-dimen- 
sional cellular structure develops, complicated by the presence of secondary flows in the 
end regions andTaylor--Gertler vortices developing along the walls of the cavity. Vortex 
formations vary their configurations and positions in space somewhat with time. Naturally, 
in a deep cavity, where two vortices interact, thepicture is still more complicated. The 
very considerable lack of agreement of the flow rates in the ascending and descending flows 
(in each of the vortices) speaks in favor of this. The results obtained in the present work 
essentially indicate the necessity of three-component measurementsof the velocityin "plane" 
vortex flows over the entire volume of the cavity. Profiles of the longitudinal component 
of the average velocity in the region adjacent to the z0x plane (see Fig. ib) for several 
cross sections of the jet are presented in Fig. 3 in the coordinates u and ~i/2,where 

= (u u2)/(ul -- u2); ul is the velocity at the jet axis (~ = 0.125); u2 is the velocity at 
the outer boundary of the jet; ~i/2 = y/~,/2; 61/2 is the conventional thickness of the jet 

(the distance from the jet axis where u = 1 to the point at which u = 0.5). Points 1-3 corre- 

spond tot = x/H = 0.2, 0.3, and 0.4. The point at which ~u/~y = (~u/~y)core-const is taken 

as the outer boundary of the jet. Here we also plot (solid line) the universal velocity pro- 
file in accordance with the formula [4] 

(u u~)/(u~ - -  u2) = i - -  6 ~  ~ + 8TI 3 - -  3 ~  4, ( 1 )  

where ~ = y/6; 6 is is the half-width of the jet. The experimental velocity profiles in the 
jet practically coincide with the universal velocity profile. The velocity profile in the 
mixing zone in this cavity has the same character of variation along x as for Re = 1.5"103 in 
a square cavity [3]. 

The velocity distribution at the limit of the boundary layer along the cavity walls is 
shown in Fig. 4. We assume that the liquid boundary layer extends from the cavity wall to the 
point at which the velocity has a maximum. We construct the velocity distribution at the 
limit of the boundary layer along the longitudinal coordinate, conditionally opening up the 
cavity walls into a plane (see Fig. 4). Having this dependence, we can calculate the values 
of the Pol'gauzen form parameter A, characterizing the influence of the longitudinal velocity 
gradient on the laminar boundary layer through the formula A = (62/~)~Um/~X, where ~ is the 

thickness of the boundary layer; 9 is the kinematic viscosity coefficient. 

The experimental profiles of the longitudinal component of the average_velocity in t_he 
boundary layer in the_upper part of the back wall are shown in Fig. 5a [i) x = 0.35; 2) x = 
0.45; 3) x = 0.5; 4) x = 0.55; 5) A = 0; 6) A = --12]. 

Separation of the boundary layer, as in laminar flow in a square cavity [3], occurs at 
values of the form parameter A far exceeding the separation value of A (Ase P = --12). The 

separation velocity profile at the back wall (x = 0.55) also differs considerably from the 
separation profile at a flat plate. 

The longitudinal and transverse velocity components in a cavity with a ratio of sides 
L/H = 2 (L = 40 mm, H = 20 ~n) are shown in Fig. 6a and b while the velocity field in a 
shallow cavity is shown in Fig. 6c for Re = 1.5"103 . 

In such a cavity one main vortex forms, the central part of which has an approximately 
elliptical shape with a ratio of axis lengths of ,2:1. The major axis of the vo[tex is 
arranged horizontally and the center of the vortex has the coordinates x = 1.4, y =-0.4. 
The vorticity is not constant in it. A secondary vortex rotating in the opposite direction 
forms in the lower left-hand corner of the cavity. The area occupied by the secondary vortex 
is 20% of the cross-sectional area of the cavity. 
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It follows from Fig. 6 that removal of liquid from the cavity is observed over most of 
the upper cross section of the cavity (along the line y = 0), and only at x = 1.7 does the 
flow turn into the cavity. The ratio of_the flow rates of the descending and ascending streams 
is B = 0.825 at y = -0.2 and B = 0.9 at y =-0.5. 

The velocity profiles in the boundary layer at the back wall and bottom of the cavity in 
t_he region of the main vortex are shown in Fig. 5 [b) back_wall; i) x =--0.25; 2) x =--0.3; 3) 
x =-0.35; 4) x = 0.4; 5) A = 0; 6) A = --12; c) bottom; i) x = 0.45; 2) x = 0.55; 3) x = 0.65; 
4) x = 0.75; 5) x = 0.8; 6) A = 0]. 

The initial velocity profile (x = 0.25) is in satisfactory agreement with the Pol'gauzen 
laminar profile. The separation profile differs very considerably from the Pol'gauzen separa- 
tion profile (A = --12). The initial profile at the bottom of the cavity (x = 0._45) is close 
to the separation profile at the back wall of the cavity. With an increase in x the profile 
first fills out and then becomes a separation profile again. 

We also obtained the velocity distribution in a shallow cavity in the mixing zone and in 
the outer part of the wall jet (the flow region lying between the core of the stream and the 
boundary layer) in the turbulent mode of flow (Re = 1.5"i0~). The velocity profile in the 
mixing zone agrees well with the universal jet velocity profile (i) [see Fig. 3: 4) x = 0.45; 
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5) x = 0.5; 6) x = 0.55; 7) x = 0.65], while the velocity distribution in the jet part of the 
wall jet (not presented in the article) retains the form of the velocity profile of that part 
of the jet in the mixing zone which turns into the cavity after hitting the back wall (below 
the line y = 0), i.e., exactly the same pattern as in a square cavity (Fig. 3 of [3]) is 
observed. 
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FLOW OF A LIQUID FILM OVER THE INNER SURFACE 

OF A ROTATING CYLINDER 

Yu. V. Martynov UDC 532.516 

i. The dimensionless equations of motion and continuity and the boundary conditions in 
a coordinate system y, z, ~(where z = z ~ is the axial coordinate, ~ = ~o, y = R-- r ~ the 
origin is located on the joint between semiinfinite tubes, z ~ r ~ o is a cylindrical coordi- 
nate system) rotating about the axis of symmetry of a cylinder with the angular velocity of 
rotation of the upper semiinfinite tube have the form [i, 2] 

( 0% av~ v~ ~ Op [02% 02% i 0% % ] (1.1) 
- + E L v +  j ': Oy o~ ~ n + y oy (n ~y)~ 

[ 0% 0% VyV~ I [ 02% 02% l 0% 

( Ov~ Ovz~ Op [02vz 02v~ t Ov~ 
oy 

0% Ovy Vy --0~ Yy=--Ur;  
o - ; + ~ +  ~ + y  . 

y = 0 ,  z < O ,  v~ = v z = vo = 0 ,  

i �9 z > O, vy ---- v~ = 0 ,  Vo = o~1; 

y = h (z), kog @ Oz ] q- 4h~ -~y = O~ 

2 E ~ ( t - - h J - - E h ~ a y  + ayj (~jW [h~+(~+y)~h=l(l+hD= 

Ovo/Og + vel(~ + y) = O. = p ( t  + = 

i +~7"' 

(1.2) 

(1.3) 

Boundary conditions as z §176 be described below. The problem of Eqs. (1.1)-(1.3) 
is reduced to dimensionless form by replacement of the variables r, v, ~, p by their 
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